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Preface

Over the last couple of years, we have seen rapid growth in machine learning as
a research field. Most of this growth, however, has been in the form of algorithms
and procedures that have been established to carry out certain tasks. While there is
no doubt that the applications have been impressive, there is a still a lot to learn as
far as the theory of learning, in context, is concerned. There are numerous papers
that have been published with attempts, and we mention a few in the following
to give some grounding. The first example is [1] wherein it is shown that we can
discuss the functionality of aspects of deep learning in the context of group theory.
Similarly [2] "show how the success of deep learning could depend not only on
mathematics but also on physics: although well-known mathematical theorems
guarantee that neural networks can approximate arbitrary functions well, the class
of functions of practical interest can frequently be approximated through “cheap
learning” with exponentially fewer parameters than generic ones." More has been
done to improve our understanding, including asking questions about how well we
understand generalisation [3], attempts to establish connections between dynamical
systems and deep learning [4], etc. but more remains to be done. This thesis focuses
on the connection between what is known as the renormalisation group and deep
learning via restricted Boltzmann machines. The conventional framework for this
is in the context of measure spaces, and we start the journey by introducing this
theory. It is then followed by an introduction on spin systems, after which we see
the concepts behind renormalisation. At this point, one gets a brief treatment of
restricted Boltzmann machines, then the last two chapters then discuss results from
two relevant papers.





Chapter 1

Preliminary Probability Theory

1.1 Introduction to Measure Theory

In this chapter we shall introduce the measure theory that is crucial for discussing
our analysis on spin models, the context on which this thesis is focused. In what
follows, we shall introduce measure spaces, discuss measurable functions and, lastly,
discuss integration in this context. This content is adapted from [5], [6] and [7].

The context of measure spaces shows up quite implicitly when we talk about spin
systems– in particular, we might want to talk about taking expectations of relevant
quantities in this context, to make simplifications to our models by making assump-
tions that can be translated into constraints on the measures, etc. We also see it in
the third chapter when we talk about the renormalisation group. In this section it
is quite explicit in how it appears, as opposed to being a subtlety. Lastly, we see it
again as we talk about Restricted Boltzmann Machines. It shows up in all of the core
areas of our discussion, and is hence very important for our discussion.

There are two objectives for this section:

1. Defining measure spaces.

2. Defining what it means to integrate functions in this context.

Definition 1.1.1. Let Ω be a set. We define a σ-algebra or σ-field on Ω as a collection, A,
of subsets of Ω such that:

1. ∅ ∈ A.
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2. If A ∈ A then Ω\A ∈ A.

3. If An ∈ A for n = 1,2, · · · , then ∪∞
n=1An ∈ A.

Example 1.1.2.
1. Given any Ω, then {∅,Ω} is a σ-field.
2. Given any Ω, the set of all subsets of Ω, P(Ω), is a σ-field.
3. This example is more interesting. Given a space Ω and a collection of subsets of Ω, S, we
define the σ-algebra generated by S on Ω to be AS =

⋂{A|A is a σ-algebra on Ω and A⊃
S}. If Ω is a topological space and S is the topology, then AS is known as the Borel σ-field,
denoted B.
4. This example makes 3. more concrete. If we consider R with the usual topology, then the
Borel σ-field is the smallest sigma algebra that is generated by the usual topology.

We call a pair (Ω,A) a measurable space. The elements of A are referred to as the
measurable sets in Ω. Examples of measurable spaces follow from what is given
above.

Given two measure spaces, we can define structure preserving maps between them
which we call measurable functions.

Definition 1.1.3. Let (X,AX) and (Y,AY) be measurable spaces. A function f : X → Y
is measurable if f−1(AY) ⊆ AX .

In what follows we give examples in the form of characterisations. More concrete
examples can be obtained by simply selecting a function that satisfies any of the
relevant statements.

Example 1.1.4.
1. If f is a continuous map of topological spaces considered with Borel σ-fields, then f is a
(Borel-) measurable function.
2. Let f : X → [0,+∞] then f is measurable if and only if the set {x ∈ X| f (x) > λ} is
Borel measurable for any real number λ ≥ 0.
3. If 1A : Ω → R, where A ⊆ Ω, such that 1A(x) = 1 for any x ∈ A and 1A(x) = 0
otherwise, then this function (known as the indicator function) is measurable if and only the
subset A is measurable .

In this context of measure spaces, a function f : X → C is said to be simple if its
range has finitely many points. If we let (ai)

n
i=1 be the set of distinct points that

a simple function, f , attains, and if βi = {x ∈ X| f (x) = ai}, then we can write
f (x) = ∑n

i=1 ai1βi(x).



1.1 Introduction to Measure Theory 5

Moreover, if f : X → [0,∞] is measurable, then it can be shown that there exists a
sequence of simple measurable ( fn)∞

n=1 on X such that:
1. 0 ≤ fn ≤ fn+1 ≤ f ,
2. fn → f as n → ∞ in pointwise fashion.

This key insight is very useful for our purposes to define integration, but before that
we need to define what a measure is.

Definition 1.1.5. A measure, µ, on a measurable space (Ω,A) is a function

µ : A→ [0,+∞], such that:
1. µ(∅) = 0.
2. For any set of mutually disjoint (Ai)i≥1 ⊂A, we have that µ(∪i≥1Ai) =∑i≥1 µ(Ai),where
i = 1,2, · · · .

A triple (Ω,A,µ) is called a measure space. Here Ω is a set, A is a σ-algebra on Ω
and µ is a measure on (Ω,A).

Example 1.1.6.
1. The first example of a measure that one can consider is the trivial measure, which maps
every element of the σ-algebra to zero.
2. The second example is the Dirac measure δx for some x ∈ Ω which is defined by δx(A) =

1A(x).
3. Extending the example above, we may consider for any countable set A = {a1, a2, · · · }
the associated counting measure defined by ν = ∑n≥1 δan .

When we have measure spaces, we can talk about integration. We define integrals
using the concept of limits of step functions, which we saw above.

We begin by defining integrals for measurable simple functions.

Definition 1.1.7. Let f : X → [0,∞) be a measurable simple function. Consider the repre-
sentation f = ∑n

i=1 ai1βi where (ai)
n
i=1 are the distinct values of the range of f. If A ∈ A

then we define
∫

A f dµ = ∑n
i=1 aiµ(βi ∩ A)

Remark 1.1.8. The convention 0 · ∞ = 0 is used whenever this is necessary in the above
definition since the evaluation of the measure on some βi ∩ A might not be finite while the
value of the function is zero.

At this point, we would like to discuss integration of measurable functions. The
definition relies on the statement that given any measurable function, we can attain
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a sequence of simple measurable functions that converge pointwise to this given
function.

Definition 1.1.9. Let f : X → [0,∞] be a measurable function, g : X → [0,∞) be a measur-
able step function, and A ∈ A, then define

∫
A f dµ = sup

∫
A gdµ where the supremum is

taken over the simple measurable functions g which satisfy 0 ≤ g ≤ f .

Although we have talked about functions with values on the interval [0,∞], we
can extend this argument to R, the extended real numbers, as well as to C. This
discussion establishes the objectives for this section.

1.2 Introduction to Probability Spaces

We would like to talk about probability spaces at this point, which are simply
normalised measure spaces. We are more interested in defining distributions, which
we shall see quite early in the discussion about spin systems. The content for this
subsection is adapted from [5]. When we talk about spin systems and Restricted
Boltzmann Machines the concept of a distribution becomes prominent, and so we
wish to define what a distribution is formally, since this knowledge is important to
our study.

Definition 1.2.1. A probability space is a normalised measure space. In particular, it is
a triple (Ω,A, P) where Ω is still a set, A is the σ-algebra, and P is a measure such that
P(Ω) = 1. P is called a probability measure.

In the context of probability spaces, the elements of the σ-algebra are known as
events, and for some A ∈ A we say that P(A) the probability of A.

A mapping φ : X → S′ where X = (Ω,A) and S′ = (S,S), say, are measure spaces
is referred to as a random element in S. Where the target measure space is the
set of real numbers with the Borel measure, we call this a random variable. If
O ∈ S , then {φ ∈ O} = φ−1O ∈ A, and we may consider the associated probabilities
P{φ ∈ O} = P(φ−1O) = (P ◦ φ−1)B.

Definition 1.2.2. We define the function L(φ) = P ◦ φ−1 as a probability distribution on
the range of spaces of φ.

There are many examples of distributions (of random variables) that one usually
finds in introductory probability courses, namely, the Bernouli, Binomial, Poisson
distributions, etc. We shall not be too concerned about these distributions, and we
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shall, instead, give examples that will be relevant to our discussions where there is a
need.





Chapter 2

Spin Systems

2.1 Ising Model

We now introduce the Ising model, which is the context in which we shall discuss
our applications of concepts in the following sections. The Ising model is of interest
because it is a simple model that exhibits non-trivial properties and behaviour, but
at the same time its theory well-understood. The content of this chapter is inspired
by the discussion of spin models in [8].

Definition 2.1.1. A spin system is a collection of random variables, called spins, that we
shall denote (φx)x∈Λ or (σx)x∈Λ for some indexing set Λ.

We would like to consider, for now, an indexing set Λ that is finite but large.

Definition 2.1.2. Let Λ ⊂ Zd. We define an Ising configuration as σ = (σx)x∈Λ such that
σx ∈ {1,−1}.

An example can be seen on 2.1 for d = 2 where we have sites on a 2D-lattice and
each site is associated with a spin that can either be up or down (i.e binary valued).

We would like to be able to talk about the energy of this system, and to be able to talk
about associated spin probability distributions, because this will allow us to study
the properties of this model. In order to get to this point, we need the following
definitions.

Definition 2.1.3. Let v be a unit vector in Zd. By the discrete gradient of a function
f : Zd → C we shall refer to

(∇v f )x = fx+v − fx.
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Fig. 2.1 2D Ising Configuration Example [9]

Definition 2.1.4. Let v be a unit vector as above, once again. The Laplacian of f : Zd → C

is
(∆ f )x = −1

2 ∑
v:|v|=1

∇−v∇v fx = ∑
v:|v|=1

∇ fx

Finally, we can define the hamiltonian associated with the model as follows.

Definition 2.1.5. Let σ be an Ising spin configuration, given Λ, then an energy is associated
to each such configuration by

H0,Λ(σ) =
1
4 ∑

v:|v|=1
∑

x∈Λ
(∇vσ)2

x,

together with boundary condition terms for the boundary, ∂Λ, of Λ.

If we let E(2) be the set of nearest neighbours on the lattice, then up to an additive
constant we can rewrite the definition as −∑{x,y}∈E(2) σxσy, which is the common
definition in texts. Finally, we can talk about probabilities of configurations.

Definition 2.1.6. Let σ be an Ising configuration. The probability of such a configuration
is given by the finite volume Gibbs measure defined as

PT,Λ(σ) = Ze−H0,Λ(σ)/T ∏
x∈Λ

(
δσx,+1 + δσx,−1

)
,
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where T is referred to as temperature.

The constant, Z, normalises the PT,Λ, making it a probability measure.

Remark 2.1.7. The model we have introduced is said to be Ferromagnetic in the sense that
configurations with aligned {x,y} ∈ E(2) are energetically favourable, and have a high
probability of occurrence. The lowest energy state has all spins either equal to 1 or all of
them equal to −1. In high energies there is a greater number of configurations that realise a
specific energy. We say that high energies lead to a greater entropy of these realisations in
the probability measure. What one sees is that there is a competition between energy and
entropy whose relative weight is controlled by temperature. There is a temperature Tc such
that for T < Tc there is a dominant energy minimising mechanism, while for T > Tc there is
dominance of entropy. It is then said that the model exhibits as second order phase transition
at T = Tc.

We can generalise the model above by considering an external magnetic field that
interacts with each spin variable. In this case, we proceed as follows.

Definition 2.1.8. Let h ∈ R. We define the Ising model with an external magnetic field by
specifying the energy, Hh,Λ(σ), as

Hh,Λ(σ) = H0,Λ − h ∑
x∈Λ

σx

The probabilities are defined via a finite volume Gibbs measure with

Ph,T,Λ = Z′e−Hh,Λ(σ)/T ∏
x∈Λ

(
δσx,+1 + δσx,−1

)
,

similar to what we had before. The infinite volume limit Ph,T is the limit of Ph,T,Λ

as Λ ↑ Zd when this exits. We shall use the notation ⟨·⟩h,T to denote the expectation
given the probability measure Ph,T.

Now, we turn to the discussion about physical quantities which allow us to under-
stand the model better, and we start this by defining magnetisation, spontaneous
magnetisation, and magnetic susceptibility.

Definition 2.1.9. We define
M(h, T) = ⟨σ0⟩h,T,
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and call this the magnetisation associated with the Ising model. Similarly,

M+(T) = limh↓0M(h, T)

is said to be the spontaneous magnetisation. Lastly, slope of the magnetisation at h = 0 is
called the magnetic susceptibility.

We further proceed by defining the following quantities in order to probe and under-
stand the model behaviour near the critical temperature, where a phase transition
occurs–we say that the model is critical here. The question we ask is: "How do the
physical quantities behave around the criticality?"

Definition 2.1.10. Let T ≥ Tc, then define:

1. The two-point function as
τ0x(T) = ⟨σ0σx⟩0,T.

2. The correlation length as

ξ(T)−1 = − lim
n→∞

n−1 logτ0,nv1(T),

where v1 = (1,0, · · · ,0), a Zd unit vector

3. Susceptibility as

χ(T) = ∑
x∈Zd

τ0x(T) =
∂

∂h
M(h, T)

∣∣
h=0.

Now we can talk about behaviour near the criticality. In this regime, we find that
the spins develop strong non-trivial correlations. These scale into the the following
critical exponents (y,ν,η,δ, β) ∈ R5:

1.
χ(T) ∼ A1(T − Tc)

−y,

as T descends to Tc.

2.
ξ(T) ∼ A2(T − Tc)

−ν,

with the same behaviour of T.

3.
τ0x(Tc) ∼ A3|x|−(d−2+η),
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as |x| → ∞.

4.
M(h, Tc) ∼ A4h1/δ,

as h descends to 0.

5.
M+(T) ∼ A5(Tc − T)β,

as T ascends to Tc.

The critical exponents are conjectured to obey certain scaling relations. For example,
one such relation is Fisher’s relation, which is y = (2 − η)ν. They are also predicted
to depend primarily on the dimension d, given an ambient space Zd, and not on
the model’s fine print. We say that they are universal in this sense (or are at least
predicted to be). Determining the exponents for a model allows one to describe the
behaviour of the model around the critical point of interest.

We now provide examples of what critical exponents can be.

Example 2.1.11.

1. For d = 2, it has been shown that T−1
c =

1
2

log(1 +
√

2), and that y, β,δ,η and ν

exist. They take the values y = 7/4, β = 1/8, δ = 15, η = 1/4 and ν = 1.

2. For d > 4, one finds that y, β,δ and η exist, and that they assume the values y =

1, β = 1/2, δ = 3 and η = 0.

Similar results for dimensions 3 and 4 are largely open questions that we shall not
attempt to tackle here.

2.2 Universality of Spin Models

Now we discuss the universality of spin models, which is an interesting property.
The Ising model is only an example of a general class of models defined as follows.

Definition 2.2.1. Let Λ be a finite set, and let βxy = βyx be non-negative spin-spin coupling
constants that we shall index by Λ × Λ. A spin configuration, φ, constitutes a spin φx ∈ Rn

for all x ∈ Λ, and φ : Λ → Rn, which we shall write as φ ∈ RnΛ.
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Definition 2.2.2. Define the total energy associated with φ as

H(φ) =
1
4 ∑

x,y∈Λ
βxy|φx − φy|2 + ∑

x∈Λ
h · φx, h ∈ R.

Definition 2.2.3. For a given reference measure, µ, on Rn, referred to as a single-spin
distribution, a probability measure on the spin configuration is defined by

⟨F⟩ ∝
∫

RnΛ
F(φ)e−H(φ) ∏

x∈Λ
µ(dφx).

If the measure µ is absolutely continuous, which is to say that if λ denotes the
Lebesgue measure ([6], page 49) then λ(A) = 0 (for some measurable set A) im-
plies that µ(A) = 0, then it is convenient to take µ as the Lebesgue measure, and
equivalently add a potential term to the total energy to obtain a form

H(φ) =
1
4 ∑

x,y∈Λ
βxy|φx − φy|2 + ∑

x∈Λ
h · φx + ∑

x∈Λ
w(φx)

Definition 2.2.4. Let β be the matrix of couplings, f : Λ → R. We define the Laplacian
matrix as ∆β such that

(∆β f )x = ∑
y∈Λ

βxy( fy − fx).

One can see from here that if βxy = 1x∼y for x and y as nearest neighbours in Zd we
get the Laplacian we defined previously.

Let f = ( f1, · · · , fn) then
(∆β f )i = (∆β f i).

Thus we can write, for these functions, the total energy as

H(φ) =
1
2 ∑

x∈Λ
φx(−∆β)φy + ∑

x∈Λ
h · φx + ∑

x∈Λ
w(φx),

and one may include boundary terms.

We get a variety of spin models by varying the way in which we define µ, w and the
form of βxy. In the appropriate infinite volume limits |Λ| → ∞ the models in this
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class typically undergo phase transitions as parameters are varied. The universality
conjecture for critical behaviour predicts that this behaviour is the same within very
general symmetry classes, where these symmetries are defined by the number of
components, n, corresponding to the symmetry group O(n) and the class of coupling
constants.





Chapter 3

The Renormalisation Group

3.1 Theory

In the last part of the previous chapter, we mention that in the infinite volume
limit, the models of interest typically undergo phase transitions as one varies their
parameters. In this section we offer a more rigorous framework on how this is
done in the context of hierarchical models. This chapter is largely derived from the
treatment of the topic in [8] and [10]. The latter is the main source.

The renormalisation group is a procedure that is used to integrate out short distance
degrees of freedom in systems that usually have infinite degrees of freedom. This
procedure allows one to obtain an effective description of the system which tends to
be described a finite and small number of operators. This theory is well-established,
and has been used in Physics to solve problems that have earned people the Nobel
Prize. We give a simple outline for this procedure in this chapter.

Even with our intentions of keeping things simple, this chapter is quite technical– in
the sense of requiring a lot of definitions and results stated to achieve our objectives–
but we facilitate this journey by establishing a roadmap for the exposition. We take
the following approach:

1. First, we define Gaussian measures and the concept of covariance in the con-
text.

2. Secondly, we consider a specific decomposition of the covariance under which
we define the renormalisation group as a map on what we shall define as
global functions.
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3. Thirdly, we show that we can consider local maps, also to be defined, and
establish an equivalence to 2. This is known as the global to local programme.

4. Lastly, we spend the remaining time talking about the renormalisation group
in the local context and discuss the infinite volume limit problem.

The advantages of going from the global scale to the local scale are that we can work
with perturbative tools, which tend to be insightful given tough problems, and the
idea is that we can then obtain equivalence by taking the infinite volume limit.

We shall start by laying out the context in which we would like to work. We assume
that Λ ⊂ Zd is finite, and consider RΛ as a probability space. An element φ of RΛ

is called a field, and we have that φ : Λ → R. The assumption that we make is that
we are given a map S : RΛ → R, which we shall call an action. If we let dφ be the
Lebesgue measure on the probability space RΛ, then the action induces what is
known as the finite volume Gibbs measure on the same space, which is defined as

dµΛ(φ) = Θ−1e−Sdφ,

where Θ = Θ(Λ) is a normalisation constant, called the partition function.

Definition 3.1.1. Let Λ ⊂ Zd be finite, then a measure on RΛ is said to be Gaussian (with
mean zero) if

dµ(φ) = Gdφe
−

1
2

Q(φ,φ)
,

where Q : RΛ × RΛ → R is a quadratic form such that Q(φ,φ) > 01 for φ ̸= 0.

Remark 3.1.2.
1. Recall that a quadratic form on Rn × Rn is a map f : Rn × Rn → R such that

f (x, x) = xT Ax where A is a unique symmetric n × n matrix.
2. For our case, we shall denote this matrix as A = (A(x,y)x,y∈Λ), and write
Q(φ,φ) = (φ, Aφ) = (Aφ,φ), where ( f , g) = ∑x∈Λ f (x)g(x). Note that since the matrix
A is positive definite (i.e the associated quadratic form is positive definite), we have that its
eigenvalues are strictly positive, and so it is invertible. The inverse is also symmetric and
positive definite.
3. Given a positive-definite symmetric matrix C = (C(x,y)x,y∈Λ), one can define a Gaussian
measure on RΛ by considering A = C−1.

1We refer to this condition as (strict) positivity of the quadratic form.
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In light of this remark, we can then consider a parametrisation of Gaussian measures
by positive-definite matrices, which we express as µ ∈ N(C) or φ ∼ N(C) where the
field φ is distributed according to the definition above with A = C−1.

For µ ∈ N(C), one can show that C is the covariance of dµ ([8], Proposition 2.1.9).

Definition 3.1.3. Consider Λ as usual. A function F is said to be a local function if it assigns
to each site x ∈ Λ an interaction F({x}). F({x}) is a function of (φ(y),y ∈ {x}∗), where
{x}∗ is a neighbourhood of {x}. A function FΛ, which we define as FΛ = ∏x∈Λ F({x}), is
called a global function on Λ since it depends on all fields on Λ.

Remark 3.1.4. A translation Ty by y∈Zd acting on a local function F yields TyF({x},φ) =
F({x + y}, Tyφ), where Tyφ(x) = φ(x − y). Then a local function is said to be translation
invariant if TyF = F for all y ∈ Zd.

In what’s coming we will be interested in the limit of∫
dµeiφ(a)eiφ(b)FΛ/∫

dµFΛ

as Λ ↑ Zd. We will conveniently write this integral ratio as∫
dµFΛ

a,b
/∫

dµFΛ,

where Fa,b({x}) = F({x})eiφ(1x=1+1x=b), and this function differs from F only at the
points {a,b}2. This limit is the formal realisation of the infinite volume limit that we
previously stated to be of interest.

Definition 3.1.5. Let Λ = ΛN be a cube of side LN with L ∈ 2N + 13 and N ∈ N. That
is,

Λ = {x ∈ Zd|||x||∞ ≤ 1
2
(LN − 1)},

where
||x||∞ = max

i
|xi|.

Remark 3.1.6. The following should be kept in mind:
1. Unless stated otherwise, we shall assume that x can be identified with x + LN v̂, where v̂
is in the standard basis of Zd, which we shall call E .
2. For x,y ∈ Λ, the addition and subtraction are done componentwise modulo LN.

2In general, one considers any finite number of points.
3We adopt this notation for positive odd numbers that are greater than or equal to 3.
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An example of the structure we would like to have in mind is a torus, which is a
result of the periodic boundary conditions. For example on this diagram below we
could imagine that each intersection of the longitude lines as well as the lattitude
lines will be assigned a spin, but recall that we are not limiting ourselves to d = 3 in
general.

−2 0
2 −2

0
2−1

0

1

Definition 3.1.7. A matrix C = (C(x,y)x,y∈Λ) is translation invariant if it is a function
of x − y.

Definition 3.1.8. We say that a positive definite, translation invariant matrix C, as above,
admits a finite range decomposition if there exists a sequence of matrices (Cj)

N
j=1, N ∈ N,

such that Cj = (Cj(x,y))x,y∈Λ,

C =
N

∑
j=1

Cj,

and Cj(x,y) = 0 if |x − y| ≥ 1
2

Lj.

Suppose that φ ∼ N(C) where C has a finite range decomposition, then it is possible
to show that there exist independent ξ j ∼ N(Cj) such that

φ =
N

∑
j=1

ξ j,

with the equality in distribution. The function ξ j is referred to as a fluctuation

fields on scale j. ξ j(x) and ξ j(y) are independent if |x − y| ≥ 1
2

Lj because they are
Gaussian, and their covariance is zero.
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Let µ be a Gaussian measure on RΛ such that its covariance admits a finite range
decomposition C = ∑j Cj, and µj be a Gaussian measure whose covariance is Cj.
Then ∫

dµFΛ =
∫

dµN

∫
dµN−1 · · ·

∫
dµFΛ.

On the left of the equality F = F(φ), while on the right one inserts ∑j ξ j instead of φ.
This is a consequence of Proposition 2.1.11. in [8].

This can be rewritten by defining Ej =
∫

dµj, and then setting Z0 = FΛ, Zj = EjZj−1

for j ∈ {1, · · · , N} and ZN =
∫

dµZ0. Here Ej is perceived as a map on global func-
tions, and it is referred to as a renormalisation group transformation or R̃G map.

Definition 3.1.9. The renormalisation group is defined as the set {R̃G =Ej|j∈ {1, · · · , N}}.

Definition 3.1.10 (DCMPSTN). We shall assume the following relationship between fields
and fluctuations, which is associated with the Wilsonian procedure of the renormalisation
group–the approach that we are interested in.

φj =
N

∑
k>j

ξk, φj = φj+1 + ξ j+1, for j ∈ {0, · · · , N − 1},

φ0 = φ

φN = 0

What we have so far is an action on global functions, and we would like to show
that this action is equivalent to an action (RG) on local fields F. This is known as
the global to local program. We shall do this in the context of hierarchical models,
since this is the important context for us, but these ideas can be extended to much
more complicated models, like what are known as Euclidean models.

Definition 3.1.11 (Blocks). For each j ∈ {0, · · · , N} the torus Λ, still assuming periodic
boundary conditions, can be paved in natural way by LN−j cubes which are disjoint. These
are cubes of side length Lj with L ∈ 2N+ 1 as before. The cube which contains the origin has

the form {x ∈ Λ||x| ≤ 1
2
(Lj − 1)}, and the rest are translations of this by vectors in LjZd.

These cubes are called j-blocks (or just blocks). The notation to denote the set of j-blocks is
Bj = Bj(Λ). When j = 0, the blocks are singletons, and B = {x} with x ∈ Λ.

Definition 3.1.12 (Polymers). A union of j-blocks is called a (j-) polymer, and similarly
Pj = Pj(Λ) is the set of j-polymers. Furthermore ∅ ∈ Pj. For X ∈ Pj, the set of j− blocks
in X is Bj(X) and the number of j-blocks in X is |X|j = |Bj(X)|. Lastly, for X,Y ∈ Pj the
difference X\Y = ∪B∈X, B/∈YB, and this is an element of Pj.
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Definition 3.1.13. The hierarchical distance between x,y ∈ Λ is side length of the smallest
cube in ∪jBj which contains these points. This distance is a metric that we shall denote
disth(·, ·).

Remark 3.1.14. In fact, disth is an ultrametric, which means that for x,y,z ∈ Λ it is the
case that disth(x,y) ≤ disth(x,z) ∨ disth(z,y)

Definition 3.1.15. A covariance is said to be hierarchical if C = ∑N
j=1 Cj where Cj is positive

semi-definite and Cj(x,y) = 0 if disth(x,y) > Lj.

Remark 3.1.16. Hierarchical covariance is important since the fluctuation fields ξ j(x) and
ξ j(y) become independent if x and y are not in the same block. This is the basis of the global
to local argument for this case.

We give contextual machinery once again to pave way for results. Let X ⊂ Λ be
given, and Nj(X) be the algebra of functions that are measurable with respect to the
σ-algebra generated by {φj(x)|x ∈ X}.

Remark 3.1.17. An element of Nj(X) is a function only of fields with evaluated at sites
x ∈ X. By the DCMPSTN assumption, given on a definition above, Nj(X) are functions of
φj+1 and ξ j+1 but through only φj+1 + ξ j+1.

We extend this algebra by defining Ñj(X) as the algebra generated by

{ξ j+1,φj+1|x ∈ X}. We write Nj =Nj(Λ), and we do similarly for the extension.

We will consider N Bj
j as the set of maps such that F(B) ∈ Nj(B)4, where B is a

j-block.

Definition 3.1.18. Let X ∈ Pj and F ∈ Nj
Bj . Define

FX = ∏
B∈Bj(X)

F(B).

Remark 3.1.19. We consider the following conventions and remark:
1. F∅ = 1
2. We take sums over null indices as zero.
3. We make the same definitions with Nj replaced with Ñj.

4Generally, models require Nj(B∗) where B∗ is the neighbourhood of B.
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Theorem 3.1.20. Let µ be a Gaussian measure whose covariance is hierarchical and let
F ∈ Ñj

Bj be integrable. Then
Ej+1FΛ = (F′)Λ,

with F′ ∈ N Bj+1
j+1 defined for B′ ∈ Bj+1 by

F′(B′) = Ej+1FB′
,

and j ∈ {0, · · · , N − 1}.

Definition 3.1.21. Define (RG) : Ñj
Bj →N Bj+1

j+1 ⊂ Ñ Bj+1
j+1

Proof. We start by recalling that ξ j+1(x) and ξ j+1(y) are independent if x and y are
in different j + 1-blocks. Hence,

Ej+1FΛ = Ej+1 ∏
B∈Bj

F(B)

= Ej+1 ∏
B′∈Bj+1

∏
B∈Bj(B′)

F(B)

= ∏
B′∈Bj+1

Ej+1 ∏
B∈Bj(B′)

F(B)

= ∏
B′∈Bj+1

Ej+1FB′

= (RG)(F)(B′)

This last point ends the global to local programme, and we have the desired equiva-
lence of actions.

The infinite volume limit, at this point, can be written as

(RG)N Fa,b/(RG)N F.

We will consider infinite iterations of (RG) that bring the local function to the fixed
point F(B) for all B. In these cases, the iteration on Fa,b may converge to the same
point up to a constant, and in this case we will call the constant the formal infinite
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volume limit. In order to make identification with

lim
N→∞

∫
dµFa,b/

∫
dµFΛN ,

one needs to show that the final (RG) iteration is continuous near 1. We would like
to say more about how one goes about studying this limit.

The last context required is to set up domains on which (RG) can be studied. We
consider the setting such that for each scale j a norm exists on Ñj such that

||FX|| ≤ ||F||X

where ||F||X = ∏B∈Bj(X) ||F(B)|| for F ∈ Ñj and

Ej+1 : Ñj →Nj+1 ⊂ Ñj+1

where ||Ej+1Z|| ≤ ||Z||, and this norm is complete. This completeness ensures that
the finite norm elements on Ñj are a Banach space, which we denote with the same
notation, Ñj. The norm must be such that Nj is a closed subspace. Other spaces get

their norms as subspaces of products (cartesian), for example F ∈ Ñj
Bj the norm is

max{||F(B)|||B ∈ Bj}.

Definition 3.1.22. Let BX denote an open ball centered at the origin on a Banach space X.
We say that a function defined on such a ball, with values in another Banach space, is smooth
(near the origin) if it is C2, in the sense of having two Frechet derivatives which are defined
and continuous on the ball.

Theorem 3.1.23. The map (RG) : Ñj
Bj →N Bj+1

j+1 is a smooth map of Banach spaces and
the derivative D(RG)F of (RG) at F in the direction Ḟ is

D(RG)F Ḟ(B′) = ∑
B∈Bj(B′)

Ej+1FB′\B Ḟ(B)

Proof. See ([10], Lemma 2.12).

An important result in the proof is that

||D(RG)F Ḟ|| ≤ Ld(||F||)Ld−1||Ḟ||.
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The Ld is a sign of what is called expanding direction in (RG), the most obvious of
which is shown by

(RG)(eλF) = eLdλ(RG)(F).

We call 1 a relevant operator in the Wilsonian paradigm. Here the "1" is the function
of fields which doesn’t depend on them, and λ is its coefficient. The notion of
expanding directions is what makes it hard to study the convergence of the infinite
volume limit.

The strategy we take to study the action of (RG) on F ∈ N Bj
j is to decompose the

local function to get F = I + K, where we can compute the action Ej+1 for I ∈ N Bj
j .

This part carries the part of F that expands. The part K ∈N Bj
j is an error that contains

the contract parts as well as parts that are small in comparison to I.
The directions that expand and contract are changing along the orbit of the action,
so we have to make a change of coordinates of the two parts above each time we
have an action. This is the role of Ĩ in what follows. We state the following theorem
which we shall not prove.

Theorem 3.1.24. For any integrable Ĩ ∈ N Bj
j+1,

(RG)(I + K) = I′ + K′,

where for B′ ∈ Bj,
I′(B′) = ĨB′

,

and
K′(B′) = ∑

B∈Bj(B′)

ĨB′\BEj+1(K + I − Ĩ)(B) + O(||K + I − Ĩ||2),

where O(||K + I − Ĩ||2) is a smooth function of (K, I, Ĩ) ∈N Bj
j ×N Bj

j ×N Bj
j+1 whose norm

is bounded as indicated.

Proof. See ([10], Lemma 2.14)

Lastly, for each scale j we define an element F = 1 which lives in N Bj
j as F(B) = 1

for all B ∈ Bj. (RG) takes 1 ∈ N Bj
j to 1 ∈ N Bj+1

j+1 . Even though these Banach spaces
are not the space, this is referred to as the trivial fixed point.

One can note at this point that
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D(RG)1Ḟ(B′) = ∑
B∈Bj(B′)

Ej+1Ḟ(B),

and to make the infinite volume argument more precise, we give the following
definition.

Definition 3.1.25. If limN→∞ ||(RG)N F − 1||= 0 and there exists a constant A such that
limN→∞ ||(RG)N F − A1|| = 0 then one calls A the formal infinite volume limit.

At this point the plan is to consider (RG) as a map on pairs (I,K), in which K
will be an element of a Banach space that may depend on the scale j and I will be
determined explicitly by parameters λ ∈ Rγ for some γ ∈ N. These parameters are
called coupling constants–these are coordinates for the non-contracting directions,
relevant and marginal operators in Wilsonian terminology. In addition to this, I
will be such that the trivial fixed point is (λ,K) = (0,0). Using the stable manifold
theorem ([10], Theorem 2.16), it is possible to show that (λ,K) ends up on the fixed
point if λ is correctly chosen, a process called tuning. Theories defined on these fixed
points are well-studied, and this is where we get possible effective descriptions of
the systems at large scales.
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3.2 Example Application

The content of this section will conceal the machinery in the previous chapter, but
we go over it because it gives a simple way to concretise the important ideas in a
context that is much closer to what we are concerned with for the rest of the thesis.
We encourage the reader to see the example with a perturbative element, similar
to what we in the theoretical coverage, from Chapter 3 of [10] and a different one
on the discussion of [11]. A QFT approach to this section may also be found at [12].
What follows is derived from [11] and [13].

Consider the following picture for intuition in the few paragraphs below.

Fig. 3.1 A Rough Schematic of the Renormalisation Procedure [11]

Concerning the mentioned approach of interest, we usually consider a hamiltonian
H dependent on fields m, for example this could be the magnetisation field, and
define three operations:

1. Changing the minimum length scale for allowed variations of the field (fluctu-
ations) from a ∈ R to ba where b ∈ R and b > 1. That is, consider

m̃(x) =
1

(ba)d

∫
c(x)

m(y)dy,

where c(x) is a cell centred at x. This is known as coarse-graining.
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2. The action above amounts to changing the resolution of the picture given
above. This decrease in resolution makes this picture grainier, and the original
resolution can be restored by considering

x′ =
x
b

.

This is known as rescaling.

3. In the same way, there is a need to correct for the variations in fluctuations in
the rescaled image, which is done by introducing some renormalisation factor
ζ, such that

m̃′(x′) =
1
ζ

m̃(x′).

The key insight is that on length scales that are smaller than the correlation length,
a quantity that we saw in the context of the Ising model, but that we can define
similarly in other contexts, then the renormalised configurations are statistically
similar to the initial configurations. This is a statement that says that they may be
distributed by similar hamiltonians, with similarity defined in a distributional sense.
What this tells us is that if the original hamiltonian is driven to a fixed point by
parameter tuning (to zero), then the second will achieve the same state with the
scaled parameters. The correlation length scales as ξ/b.

From this we get RG as a map that takes parameters associated with the initial
configuration to the parameters associated with the renormalised configurations.
In general this mapping is non-linear. Hamiltonians that correspond to statistically
self-similar configurations correspond to fixed points of this map, since the transfor-
mations themselves describe dilation effects on the hamiltonian of the system. The
correlation length scales as mentioned above, and as such the correlation at fixed
points has to be either zero or infinity. In the former case, the description is that of
independent fluctuations at each point, which corresponds to complete disorder
(infinite temperature) or complete order (zero temperature5), and the latter describe
critical points. We can then linearise the RG transformation on the parameters,
which paves the way to discussing flows and as above, but we omit this explicit
discussion, and consider a practical settting below.

We shall consider the renormalisation procedure applied to the 1-dimensional Ising
model following discussions in [14] and [15].

5The lowest temperature essentially.
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Consider the Ising model context. The renormalisation group here is the grouping of
spins into blocks using their couplings so that there are fewer sites, but the structure
of the lattice is retained. Each block gets an associated spin that we will assume can
be obtained by choosing the most frequent spin, by letting one spin determine what
the block spin will be (which works better in low temperatures), or by averaging. In
order to determine block spin, we define let f (σi) be a function for σi inside a chosen
block. The new renormalised lattice will have a Hamiltonian H′(σ′) where σ′ is the
block spin. The old partition function is then Z = Trσe−βH(σ), while the new one is
Z′ = Trσ′e−βH′(σ′). Using the formal definition of the renormalised partition,

e−βH′(σ′
J) = Trσ ∏

J
(δ(σ′

J − f (σi)))e−βH(σ),

one can show that the two partition functions are the same.
The Hamiltonian for the 1-dimensional system is

H = −K ∑
⟨i⟩

σiσi+1 − h∑
i

σi,

with a magnetic field. If we remove all odd sites then the remaining spins can be
perceived as the blocks. The energy contribution of each removed atom, i, is

Hi = −Kσi(σi−1 + σi+1)− hσi −
h(σi−1 + σi+1)

2
,

so that the partition function is the sum over these, which is

Z = 2cosh(K(σi−1 + σi+1) + h)e
h(σi−1 + σi+1)

2 .

One the other hand, we write the renormalised Hamiltonian as

H′ = −K′∑
⟨i⟩

σi−1σi+1 − h′∑
i

σi − ∑
i

g′(K),

where the sum of g′(K) anticipates site energy constants.

Using the equality of partition functions we obtain
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2cosh(K(σi−1 + σi+1) + h)e
h(σi−1 + σi+1)

2 = eK′ ∑⟨i⟩ σi−1σi+1+h′ ∑i σi+∑i g′(K)

Finally by considering the cases where both spins have the same orientation in the
positive and negative direction as well as when they are opposite they get relations
that yield the following solutions to the constants.

h′ =
1
2

ln
(

cosh(2K + h)
cosh(−2K + h)

)
+ h,

K′ =
1
4

ln
(

cosh(2K + h)cosh(−2K + h)
cosh2 h

)
,

and

g′(K) =
1
4

ln(cosh(2K + h)cosh(−2K + h)cosh2 h) + ln2.

At this point, we can talk about fixed points of this system. We consider the simple
case with h = 0.

Considering K′, we find that this yields e2K′
=

e2K + e−2K

2
.

Unless K = ∞, K′ is a decreasing function in K6, and so there are two fixed points,
with the second being K = 0. K is a constant that is proportional to the inverse
temperature. Hence, as K′ decreases the system flows towards T = ∞. If K = ∞,
then the system stays at T = 0.

We can visualise the flows for this example as follows.

Fig. 3.2 Flow Visualisation for the 1D Ising [15]

In this example, there are no critical fixed points. Such fixed points lead to phase
transitions, and emergence of interesting properties. The 2-dimensional model

6We think of the equation above as being recursive.
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exhibits a phase transition, as suggested by examples in Chapter 2, and we shall say
more about this in the chapters that are coming up.





Chapter 4

Energy Based Models

4.1 Theory

4.1.1 Restricted Boltzmann Machines’ Theory

In this chapter, we shall discuss Restricted Boltzmann Machines (RBMs), which fall
under the umbrella of a class of architectures known as energy based models. This
is the context in which we shall see the ideas behind possible connections between
deep learning and the renormalisation group being explored. One of the pioneering
papers for this architecture is [16], but for this discussion we follow closely what
is on [17]. The paper [18] offers further insights on the structure of RBMs from an
algebraic geometric perspective, but we shall not go into that much detail.

In order to get to the definition of RBMs, we need to introduce some graph structure,
the idea of conditional independence given random variables, as well as define what
is known as the global Markov property. We do this below.

Definition 4.1.1. A graph is a pair G = (V, E) such that V is a finite set of vertices, and E
is the set of edges between them.

Remark 4.1.2. We shall only consider undirected graphs where the edges have no direction
information associated with them.

Definition 4.1.3. Let u,v ∈ V, and S ⊂ V such that any path from u to v contains a node
from S, then we say that S separates u and v or is a u − v separating set.
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Definition 4.1.4. Consider a measure space (Ω,A, p). Let X1, X2 and X3 be random
variables. We say that X1 and X2 are conditionally independent given X3 if

p(X1, X2|X3) = p(X1|X3)p(X2|X3).

Definition 4.1.5. Let Xv be a random variable with values in Λv for v ∈ V given

G = (V, E). Let p be an associated measure. The random variables X = (Xv)v∈V are
called a Markov random field (MRF) if for any partition (A, B,S) of V with all vertices
of A separated from B by vertices S we have that (Xa)a∈A and (Xb)b∈B are conditionally
independent given (Xs)s∈S. We say that p satisfies the global Markov property.

Finally, a RBM is defined as follows.

Definition 4.1.6. A restricted Boltzmann machine (RBM) is defined as a MRF associated
with a bipartite graph Km,n. We refer to the m−vertex set as the set of visible units, which
we shall denote V = (V1, · · · ,Vm). Similarly, the hidden units are the other set of disjoint
vertices, which we denote H = (H1, · · · , Hn). We consider V and H as random variables.

Remark 4.1.7. We shall assume, unless stated otherwise, that the random variables (V , H)

take values (v, h) ∈ {0,1}m+n.

The following definition further establishes the structure of the RBM context that we
are considering.

Definition 4.1.8. We define the joint probability under the model as a Gibbs distribution

p(v, h) =
1
Z

e−E(v,h),

where

E(v, h) = −
n

∑
i=1

m

∑
j=1

wijhivj −
m

∑
j=1

bjvj −
n

∑
i=1

cihi,

where wij are real weights between units Vj and Hi, and bi, ci ∈ R are bias terms correspond
to the variables vj and hi.

Hence, the rough picture we want to keep in mind is the following.
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a0 a1 a2

b0 b1 b2 b3

where label V = (b0,b1,b2,b3) and H = (a0, a1, a2), and we have an assignment of
weights to the edges of the graph which are the wij.

The assumed task is that one would like to model an m-dimensioal unknown prob-
ability distribution µ, and usually it is not true that all variables X = (Xv)v∈V in
an MRF need to have correspondence to some observed component. This split
between visible and hidden units falls out from this situation. The hidden variables
allow the description of complex distributions over the visible part via conditional
probabilities–they introduce dependencies between the visible variables, which
correspond to components of observation.

Remark 4.1.9. The bipartite structure of the associated graph means that the hidden vari-
ables are independent given the state of the visible variables and vice-versa. This is to say
that, considering an associated measure p,

p(h|v) =
n

∏
i=1

p(hi|v),

and

p(v|h) =
m

∏
i=1

p(vi|h).

The following result gives as an analytical expression for the probability distribution
over the visible units, and we can do similar for the hidden units.
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Claim 4.1.10. In this context,

p(v) =
1
Z

m

∏
j=1

ebjvj
n

∏
i=1

(
1 + eci+∑m

j=1 wijvj

)
.

Proof. Observe that

p(v) = ∑
h

p(v, h)

=
1
Z ∑

h
e−E(v,h)

=
1
Z ∑

h1

· · ·∑
hn

e∑m
j=1 bjvj

n

∏
i=1

e
hi

(
ci+∑m

j=1 wijvj

)

=
1
Z

e∑m
j=1 bjvj

n

∏
i=1

∑
hi

e
hi

(
ci+∑m

j=1 wijvj

)
.

At this point, the expression we want pops out via properties of the exponential and
the remark on the values that h can take.

In what follows, we shall assume that the context is as above, unless otherwise
stated. The following results tells us about the modelling abilities of RBMs in the
context of recovering distributions mentioned above. We do not prove this result,
but a reference is given.

Theorem 4.1.11. Any probability distribution can be modelled arbitrarily well by an RBM
with m visible and k + 1 hidden units where k denotes the number of input elements from
{0,1}m with non-zero probability of being observed, which is also known as the cardinality
of the support set of the target distribution.

Proof. See ([19], Theorem 2.4).

In what follows the main task is to talk about gradients of the likelihood function
that we will define. The process of recovering a distribution amounts to skilfully
tuning the weights and biases in order to get a model that reproduces the correct
underlying description. We can go about this by defining a likelihood function
whose gradients we then use to achieve this effective tuning of parameters. What
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follows below is a discussion of this. First, we discuss some conditional dependences
between the hidden units and the visible units.

The sigmoid function is defined

σ(x) = 1/(1 + e−x).

Using Bayes’ rule of conditional probabilities, it can be shown that

p(Hi = 1|v) = σ

( m

∑
j=1

wijvj + ci

)
,

and

p(Vj = 1|h) = σ

( m

∑
i=1

wijhi + bj

)
.

Proof. We prove the second statement. Let v−l denote state of visible units except
the lth unit. Let αl(h) ≡ −∑n

i=1 wilhi − bl, and

β(v−l, h) ≡ −∑n
i=1 ∑m

j=1,j ̸=l wijhivj − ∑m
j=1,j ̸=l bivi − ∑n

i=1 cihi. Notice that

E(v, h) = β(v−l, h) + vlαl(h), where the latter term collects all vl terms.

p(Vl = 1|h) = p(Vl = 1|v−l, h)

=
p(Vl = 1,v−l, h)

p(v−l, h)

=
e−E(vl=1,v−l ,h)

e−E(vl=1,v−l ,h) + e−E(vl=0,v−l ,h)

=
e−β(v−l ,h) · e−αl(h)

e−β(v−l ,h) · (e−αl(v−l ,h) + 1)

=
1

1 + eαl(v−l ,h)

= σ(−αl(h))

We can do similar for p(Hi = 1|v), but we omit this as the procedure is similar. Now,
we would like to define the likelihood function.
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Definition 4.1.12. Define the likelihood function of an MRF given a set of independent and
identically distributed variables, S, called the training set, as a function L : Θ → R such
that

L(θ|S) =
l

∏
i=1

p(xi|θ),

for some parameters θ.

The problem of recovering an unknown distribution given samples applied to RBMs
amounts to finding parameters that maximise the likelihood. In practice, people
usually talk about the logarithm of the likelihood (the log-likelihood). The following
derivatives can be obtained with relative ease from the usual methods from calculus,
and are worth mentioning as part of the theory.

1.
∂L(θ|v)

∂wij
= p(Hi = 1|v)vj − ∑

v
p(v)p(Hi = 1|v)vj.

2.
∂L(θ|v)

∂bj
= vj − ∑

v
p(v)vj.

3.
∂L(θ|v)

∂ci
= p(Hi = 1|v)− ∑

v
p(v)p(Hi = 1|v).

We now discuss briefly how one comes to these equations, taking the first example.
Looking at the first equation,

∂L(θ|v)
∂wij

= −∑
h

p(h|v)∂E(v, h)
∂wij

+ ∑
v,h

p(v, h)
∂E(v, h)

∂wij

= ∑
h

p(h|v)hivj − ∑
v

p(v)∑
h

p(h|v)hivj,

which then gives us the right hand side of 1.
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Remark 4.1.13. The procedure to get the first line is straightforward differentiation, noting
that

∑
h

p(h|v)∂E(v, h)
∂wij

= ∑
h

p(h|v)hivj

= ∑
h

n

∏
k=1

p(hk|v)hivj

= ∑
hi

∑
h−i

p(hi|v)p(h−i|v)hivj

= ∑
hi

p(hi|v)hivj ∑
h−i

p(h−i|v)

= p(Hi = 1|v)vj

= σ(
m

∑
j=1

wijvj + ci)vj

For the mean of the derivative in question over a training set S = {v1, · · · ,vl}, we
often write

1
l ∑

v∈S

∂ lnL(θ|v)
∂wij

=
1
l ∑

s∈S

(
− Ep(h|v)

(
∂E(v, h)

∂wij

)
+ Ep(h,v)

(
∂E(v, h)

∂wij

))
=

1
l ∑

v∈S

(
Ep(h|v)[vihj]− Ep(h,v)[vihj]

)
= ⟨vihj⟩p(h|v)q(v) − ⟨vihj⟩p(h,v),

where q is the empirical distribution. This leads to the rule

∑
v∈S

∂ lnL(θ|v)
∂wij

∝ ⟨vihj⟩data − ⟨vihj⟩model,

for updating the weights.





Chapter 5

Relating Aspects of Deep Learning
and the Renormalisation Group

We saw in chapter 3 that the renormalisation group extracts relevant features by
marginalising over short distance degrees of freedom. The procedure starts at a
microscopic scale and, through iterations, moves towards large scale fluctuations.
The major draw back is that it is often impossible to do the renormalisation group
procedure exactly, and approximate procedures include a class of variational real-
space renormalisation schemes introduced by Khadanoff on the relevant papers [20],
[21] and [22]. This is the idea of variational renormalisation group. This chapter is
derived from [23].

Consider Λ ⊆ Zd with spins {σx} for x ∈ Λ, such that σx ∈ {−1,1} and |Λ| = N.
Assume that the spins Gibbs distributed and let σ denote a configuration of spins

corresponding to the sites. We write p(σ) =
e−H(σ)

Z
1, as in Chapter 2, where H(σ)

is the hamiltonian and Z is the partition function. In this context, when we write
f (σ,σ′), for some function f , where σ′ is another configuration of interest, then we
mean f ({σx,σ′

y}).

The hamiltonian is typically dependent on a set of couplings, K = {Ks}, that
parametrises the set of all possible hamiltonians. An example with binary spins is
the following

H(σ) = −∑
x

Kxσx − ∑
x,y

Kxyσxσy − ∑
x,y,z

Kxyzσxσyσz + · · · ,

1Here we have set the temperature to 1, but we do this without loss of generality in the discussion.
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where x,y,z ∈ Λ. Here the coupling constants qualify spin interactions of different
orders.

Definition 5.0.1. Consider the spin system above. We define the free energy of the spin
system as Fσ = − log Z.

Let σ′ denote a field over spins on Λ′ ⊂ Λ with |Λ′| = M < N. We view these as a
coarse-graining of the first system. Each of the x′ ∈ Λ′ is represents a collection of
spins on the initial lattice whose small scale fluctuations have been integrated out.

An example is illustrated in the following.

Fig. 5.1 A Coarse-Graining Example for d=2[24]

In this picture, the grey points act as the original system, and the clusters of four can
be regarded as coarse-grained spins in the new picture.

We define a hamiltonian over these spins as H′(σ′) = −∑x K̃xσ′
x − ∑x,y K̃xyσ′

xσ′
y −

∑x,y,z K̃xyzσ′
xσ′

yσ′
z + · · · .

We then define the renormalisation group map (RG) as the a map from {K} → {K̃}.

Definition 5.0.2. Define an operator Tλ(σ,σ′) such that this operator depends on parame-
ters {λ} and

e−H′
λ(σ) ≡ Trσx eTλ(σ,σ′)−H(σ).



43

Remark 5.0.3. We think of Tλ(σ,σ′) as an operator that encodes pairwise interactions
between physical and coarse-grained degrees of freedom.

In the same way above, we define the free energy for the coarse-grained system as
Fσ′

λ = − log Z′
λ with Z′

λ defined from the system defined by H′
λ.

With Khadanoff’s procedure, the goal is to ensure that long-distance physical ob-
servables are invariant to the course graining process by choosing parameters {λ}
such that we minimise the function

∆F = Fσ′
λ − Fσ.

Note that
∆F = 0 ⇐⇒ Trhj e

Tλ(σ,σ′) = 1,

whenever this holds we say that the renormalisation group transformation is exact.
In general, however, this is not possible to do.

We shall now show that this variation has a natural interpretation as deep scheme
based on RBMs.

Consider the RBM model again with a set of N visible units σ, and M hidden nodes
σ′ with the associated measure pλ, where λ = {hj,wij, ci} is a set of real parameters.
We define the energy as in the previous chapter and write

E(σ,σ′) = −∑
j

bjhj − ∑
i,j

viwijhj − ∑
i

civi,

with joint probability
pλ(σ,σ′) = e−E(σ,σ′)/Z.

We shall define a variational RBM hamiltonian for pλ(σ) which we define as

pλ(σ) ≡ e−H”λ(σ)/Z,

and similarly pλ(σ
′).

Observe that Tλ(σ,σ′) in variational renormalisation group plays the role of E(σ,σ′)

in RBM theory. We shall show that these quantities are related through the following
equation

T(σ,σ′) = −E(σ,σ′) + H(σ).
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This map is a one-one mapping between the variational RG scheme and RBMs.

Claim 5.0.4. In this context,
H”λ = H′

λ

Proof. Recall that
e−H′

λ(σ) ≡ Trσx eTλ(σ,σ′)−H(σ).

Now

e−H′
λ(σ

′)/Z = Trvi e
Tλ(σ,σ′)−H(σ)/Z

= Trvi e
−E(σ,σ′)/Z

= pλ(σ
′)

= e−H”λ(σ
′)/Z.

This equivalence turns out to hold if and only if we have that

pλ(σ) = ∑
{σi}

pλ(σ,σ′) = Trσi pλ(σ,σ′),

and similar for pλ(σ
′). If this is not the case then there are counter examples [25].

Lastly, one may observe that

eT(σ,σ′) = e−E(σ,σ′)+H(σ)

=
Pλ(σ,σ′)

Pλ(σ)
eH(σ)−H”

λ(σ)

= Pλ(σ|σ′)eH(σ)−H”
λ(σ).

This implies that when RG is exact then H(σ) = H”
λ(σ) and Tλ(σ,σ′) is the condi-

tional probability.



Chapter 6

Insights into Computational
Investigations and Recent Results

The goal of this chapter is to discuss how one would go about investigating this
mentioned connection numerically, and progress that has been made with this
regard. We derive the content from one of the recent papers in the field [25]. The
nature of this will be largely discursive.

Definition 6.0.1. Consider the RBM context in Chapter 5. Define the Kullback-Leibler
divergence as

DKL(p(σ)||pλ(σ)) = ∑
σ

p(σ) log
(

p(σ)
pλ(σ)

)
.

Minimising this quantity is equivalent to maximising the log-likelihood [26]. When
this is done in training then the RBM gives exactly the data distribution.

We consider a KL-divergence approach moving forward, and as we did with the
log-likelihood, we can write the gradients as

∂DKL(q||p)
∂Wia

= ⟨viha⟩data − ⟨viha⟩model,

∂DKL(q||p)
∂b(v)i

= ⟨vi⟩data − ⟨vi⟩model,

and
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∂DKL(q||p)
∂b(h)a

= ⟨ha⟩data − ⟨ha⟩model.

[27] shows an approach to computing these gradients, if one is interested. Comput-
ing the gradients then proceeds by an approximation strategy, because the exact
computations are computationally expensive. We proceed by considering a basic
sampling strategy:

Assuming that one is a given a vector of visible vectors, then one can sample hidden vectors
by setting ha = 1 with probability

p(ha = 1|v) = 1
2

(
1 + tanh(∑

i
Wiavi + b(h)a )

)
,

and given the vectors in the reversed order, then we similarly set vi = 1 with probability

p(vi = 1|h) = 1
2

(
1 + tanh(∑

a
Wiaha + b(v)i )

)
.

Notice that this is the same what we saw in Chapter 4 since tanh(x) = 2σ(x)− 1.

Expectations for the data are then obtained using v̂, which is obtained from the
training data, as well as using ĥ, which we generate using the outline of setting each
ha = 1 with the specified probability.

This is to say that order to determine expectation values, one considers a sample of
visible vectors {ṽ}, and a sample of hidden vectors {h̃} in this iterative sampling
process known as the Gibbs sampling wherefrom we get that the Ath vectors are

ĥ(A)
a = tanh(∑

i
Wiav̂(A)

i + b(h)a ),

ṽ(A)
i = tanh(∑

a
Wiaĥ(A)

a + b(v)i ),

and

h̃(A)
a = tanh(∑

i
Wiaṽi

(A) + b(h)a )
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Then the expressions used in the training of the RBM are

⟨viha⟩data =
1

Ns
∑
A

v̂(A)
i ĥ(A)

a

⟨viha⟩model =
1

Ns
∑
A

ṽ(A)
i h̃(A)

a

⟨vi⟩data =
1

Ns
∑
A

v̂(A)
i

⟨vi⟩model =
1

Ns
∑
A

ṽ(A)
i

⟨ha⟩data =
1

Ns
∑
A

ĥ(A)
a

⟨ha⟩model =
1

Ns
∑
A

h̃(A)
a ,

where A = 1, · · · , Ns.

At this point, we can talk about flows from learnt weights. Here, one uses the
weights and biases that are obtained from a trained RBM to construct a continuous
flow from an initial state to a final state. To proceed, label the data set by an index A,
as v̂(A). For each index, this quantity is a collection of spin values–one for each lattice
site. We generate an RBM flow using the sampling strategy mentioned previously,
and we denote the data set produced after k steps as ṽ(A,k), where ṽ(A,0) denotes the
original training set. We obtain a flow of length n as follows

ṽi
(A,1) = tanh(∑

a
Wiaĥ(A)

a + b(v)i )

ṽ(A,2)
i = tanh(∑

a
Wiah̃(A,1)

a + b(v)i ),

immediate steps, and

ṽ(A,n)
i = tanh(∑

a
Wiah̃(A,n−1)

a + b(v)i ).

With the hidden flows,
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h̃a
(A)

= tanh(∑
i

Wiaṽ(A)
i + b(h)a )

h̃(A,1)
a = tanh(∑

i
Wiaṽ(A,1)

i + b(h)a ),

immediate steps, and

h̃(A,n)
a = tanh(∑

i
Wiaṽ(A,n−1)

i + b(h)a ).

We consider an |λ| = N ≡ Lv × Lv lattice, with sites indexed by a vector k⃗. In the
practical implementation, a vector of the same length is considered, and the rows of
the array are simply concatenated to obtain a vector whose components constitute
the training data input to the visible units of the RBM. The 2-dimensional Ising model
is chosen because this model has fixed point, which is described by a well-known
theory. In the context of the chapter on renormalisation, the fixed point is unstable,
which means that generic flows move away from it. If one seeks flows that move
towards then tuning is necessary. In order to study the behaviour around the fixed
point, one may use primary operators whose correlators are power-laws of distance
on the lattice. This model exhibits a phase transition at the critical temperature,
which we can recall as Tc = 2J/k ln(1 +

√
2).

Examples of the two point and three point correlators are respectively,

⟨φ(x⃗1)φ(x⃗2)⟩ =
B1

|x⃗1 − x⃗2|2∆ ,

and
⟨φ(x⃗1)φ(x⃗2)φ(x⃗3)⟩ =

B2

|x⃗1 − x⃗2|∆|x⃗1 − x⃗3|∆|x⃗2 − x⃗3|∆
,

where ∆ = 1/8 is known as the scaling dimension of the field.

If the RBM reproduces this behaviour then we would have reasonable reasons to
believe that the RBM is doing something close to RG.

In what follows we discuss the findings from [25] when comparing the RBM mecha-
nism to RG.

i) In a theoretical sense, there seems to be a difference between RBM and RG flows
because while RBM appear to drive the configurations to critical temperature, the
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RG flow drives them to higher temperatures since temperature corresponds to a
relevant operator.

ii) The number of spins decreases along an RG flow while it is an invariant for the
case of RBMs.

iii) Numerical experiments show that RBMs generate configurations of the Ising
models which are close to what would be given by RG, and these can be used to
determine the scaling dimension of the spin variable from spatial statistics of RBM
generated patterns.

iv) Another difference that is observed stems from the fact that with regards to
correlation functions, the RBM does not reproduce the correct scaling dimension,
which implies that these two alternatives are different although they agree on large
scales.

v) The paper explores the possibility that deep-learning is an RG flow with each layer
performing an RG step. This discussion is done by studying correlation between
the visible and hidden units from RBM patterns, but there is no confidence about
emergent agreements between the two instruments on large scales.

vi) Another interesting observation is that if there are 3 stacked RBMs, then tempera-
ture flows between the first and second layers but appears to be constant from the
second to the third layer.





A Comment on Future Research Plans

Concerning future research work, I would like to investigate if there is an analytical
way to recover the behaviour observed in chapter 6, and to see what happens if we
look into Hopfield networks instead. I would also like to dive into more machine
learning research over the next k months (k ∈ N). I am exceedingly grateful, once
again, to my supervisor for this opportunity and more many of its kind to follow, as
well as to all the researchers who contributed to this field and whose insight inspired
the writing in this document.
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